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Summary

We study the LHC diffusive aperture induced by long-range collisions at injection and the effect of image

charges at the parasitic collision points, by means of a weak-strong computer simulation. Expressed in

terms of beam size, for a constant normalized beam-beam separation the diffusive aperture is shown to be

independent of the IP beta function and the beam energy. The effect of image charges is proven negligible.

1 Introduction
Simplified tracking studies [1, 2] have shown that for the nominal LHC parameters the long-range

parasitic collisions give rise to a well-defined diffusive aperture. At top energy the diffusive aper-

ture corresponds to a simultaneous amplitude in both planes of about 5.5σ (or
√

2 times this num-

ber in terms of radial distance to the origin). Outside this aperture the particle motion is chaotic

and particles are eventually lost, if nonlinear magnetic fields in the low-β quadrupoles are also

included. The strong degradation of the dynamic aperture by the parasitic collisions has been con-

firmed in more precise simulations which accurately model the individual parasitic collision points

[3]. The first part of this paper examines how the value of the diffusive aperture depends on beam

energy and optics, e.g., β squeeze. In the second part we address the question whether the effect

of the long-range collision is possibly alleviated by the image charges of the opposite beam.

2 Long-Range Beam-Beam Effects at Injection

2.1 Scaling Consideration
In our model [2] the long-range forces from all parasitic encounters on one side of each interaction

point (IP) are lumped together into a single kick, placed at a betatron phase distance of 90◦ from

This is an internal CERN publication and does not necessarily reflect the views of the LHC project management.

1



the interaction point, ignoring the small betatron phase advance between the different parasitic

collision points. If the particle position is at least 2 or 3 rms beam sizes away from the center of

the opposing beam, this total kick, expressed as a shift in the coordinate at the primary IP, can be

approximated, for horizontal crossing, as

∆x ≈ −npar
2rpNb

γ

[
x′ + θc

θ2
t

− 1

θc

]

∆y ≈ −npar
2rpNb

γ

y′

θ2
t

, (1)

where θt ≡
(
(x′ + θc)

2 + y′2
)1/2

, θc denotes the full crossing angle, x′ the horizontal slope of

the particle trajectory at the collision point, y ′ the vertical slope, Nb the bunch population, γ the

beam energy in units of the rest mass, and npar the number of parasitic collisions on one side of

the IP. In the following, we take npar conservatively as equal to 18, although 2 of these parasitic

encounters occur at such large distances that they could be ignored [4]. In the first part of Eq. (1),

we subtracted the average horizontal dipole kick on the bunch, since its effect would be corrected

by steering correctors. Note that the kick is the same on both sides of the IP, because the betatron

phase advance of about 180◦ compensates for the opposite direction of the beam-beam separation.

The vertical crossing is treated in complete analogy.

Considering the simplified case of 1-dimensional motion, y ′ = 0, we may expand the first row

of Eq. (1) as

∆x ≈ −npar
2rpNb

γ

[
−x′

θ2
c

+
x′2

θ3
c

+ . . .

]
= npar

2rpNb

γ

∑
m

(−1)m x′m

θm+1
c

(2)

We now consider a single term in the expansion on the right-hand side. We recall that a trajectory

slope x′ at the IP with zero offset corresponds to a betatron-oscillation amplitude of x = β∗
xx

′ at the

IP. To get a rough estimate, we assume that the onset of chaoticity occurs for a certain magnitude of

the relative perturbation ∆x/x. This condition for the diffusive aperture xda can be approximated

as ∣∣∣∣∆x

xda

∣∣∣∣ ≈ npar
2rpNb

γ

x′
da

m−1

θm+1
c

≈ constant. (3)

Solving the right-hand side of this equation for x′
da and expressing the diffusive aperture normal-

ized to the rms beam size by xda/σx = x′
daβ

∗
x/σx, we find that the latter should scale as

xda

σx
∼

[
εNn2

sep

nparNb

] 1
m−1

nsep, (4)

where nsep denotes the ratio of the full crossing angle to the rms IP divergence, εN = γε the

normalized transverse emittance, σx =
√

εβ∗
x the rms IP beam size, and θc = nsep

√
ε/β∗

x. Note that

higher-order terms with m � 1 will be important, since the lowest-order effects can be corrected

by the optics, e.g., by the choice of working point.

Equation (4) suggests that the diffusive aperture is independent of IP beta function and beam

energy. It depends, however, on the normalized emittance, the bunch population, the number of

parasitic encounters, and, especially, the beam-beam separation. In order to verify this scaling, we

have performed a series of weak-strong simulations using the model described in Ref. [2].
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2.2 Simulation Results
The diffusive aperture due to long-range collisions depends on the separation of the two beams

at the parasitic collision points, and thus essentially on the ratio of the crossing angle to the rms

beam divergence [1, 8]. In the present LHC optics design, the average beam-beam separation at

top energy is about 10 σ (nsep = 10) around all 4 LHC interaction points, while at injection it is

larger, about 14 σ (nsep = 14) [5]. For our simulation we have assumed a 10-σ separation in either

case, for two reasons: (1) at the time of the study the exact magnitude of separation at injection

had not yet been decided, and (2) we were interested in the general scaling of the diffusive aperture

with beam energy and IP beta function, maintaining a constant beam-beam separation in units of

the rms beam size.

Figure 1: Simulated action diffusion rates as a function of starting amplitude, for two different

values of β∗ and the beam energy; other parameters were chosen as εN = 3.75 µm, energy 450

GeV, nsep = 10, and npar = 18 on either side of 2 IPs with alternating crossing, for the working

point Qx = 0.31 and Qy = 0.32.
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Figure 1 compares simulated diffusion rates (characterized in terms of the growth in the rms

spread of action per turn divided by the rms design emittance [2]) as a function of normalized

starting amplitude, for a situation with only two interaction points. At oscillation amplitudes of

about 7σ (or nsig = 7), a value of 106ε/(108turns) is found for the diffusion coefficient plotted

along the vertical axis. This means that the spread of the squared particle amplitudes increases by

an amount equal to the nominal rms beam emittance after 100 turns (= 108/106). The amplitude

doubling time would be n2
sig times larger or 5000 turns. In other words, beyond 6σ the diffusion is

so strong that many particles are lost in less than 104 turns. Figure 1 illustrates that the simulation

nicely confirms the insensitivity to β∗ and γ expected from Eq. (4).

We next extended the number of interaction points to 4. At the time these simulations were

conducted, the crossing schemes at interaction points 2 and 8 had not yet been definitely deter-

mined. In the present scheme [6, 7], at two of the four LHC interaction points the beams cross

in the vertical plane, at the other two in the horizontal plane. This miminizes the total tune shifts

induced by the long-range encounters. If, on the other hand, for three of the collision points the

crossings were to take place in the vertical plane, and only at one IP in the horizontal plane, the

linear tune shifts induced by the different long-range encounters would not cancel, and, as a result,

the diffusive aperture measured in units of the rms beam size would be smaller than in collision.

This question is illuminated in Fig. 2, which compares the simulated diffusion rates at injection

energy for different situations:

• two IPs with 18 parasitic encounters per side per IP, all assumed with a 10 σ separation

• two IPs with twice the number of parasitic collisions to approximate the effect of 4 IPs,

• four IPs with 1 vertical and 3 horizontal crossings

• 4 IPs with 18 parasitic collisions and perfect alternating crossing and

• four IPs with 1 horizontal and 3 vertical crossings

In all cases, the working point was set to Qx = 0.31, Qy = 0.32, which corresponds to the nominal

tunes in collision. In one of the partial crossing schemes (case 3, i.e., 3 horizontal and 1 vertical

crossing), there is enhanced diffusion already at 2 σ. On the other hand, for three vertical and 1

horizontal crossings (case 5 in Fig. 2), the diffusion is slightly reduced. Exchanging the horizontal

and vertical working points reverses the situation.

Figure 3 illustrates the dependence on the number of parasitic encounters per side and per IP,

npar. Diffusion rates are shown for different values of npar, assuming 4 LHC interaction points, 3

of which with vertical crossings and the last with horizontal crossing. The left picture refers to the

collision tunes (Qx = 0.31, Qy = 0.32). The right picture depicts the corresponding results for the

injection tunes (Qx = 0.28, Qy = 0.31). The figure demonstrates that, if there are fewer close-by

parasitic encounters, the diffusive aperture increases. Its distance to the opposing beam decreases

roughly as
√

npar. For example, with ten parasitic encounters at 10σ, the diffusive aperture is

about 7.5σ, with 5 parasitic encounters it is 8.5σ, and for only two parasitic encounters, we find

the diffusive aperture at about 10σ, i.e., where particles start passing through the center of the other

beam.

Our intermediate conclusion is that if the number of parasitic encounters npar and the separation

in units of the rms beam size, nsep, were about the same as in collisions, the long-range beam-beam
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Figure 2: Simulated action diffusion rates as a function of starting amplitude, for different number

of IPs, parasitic collision points (or charge), and different crossing schemes, for the fractional tunes

Qx = 0.31 and Qy = 0.32 (nominal working point in collision); other parameters were chosen as

εN = 3.75 µm, energy 450 GeV, nsep = 10, and npar = 18.

encounters would induce a similar diffusive aperture of about 6σ also at injection. In particular,

the diffusive aperture is independent of beam energy and IP beta function. In the present injection

scheme, the average separation is about 50% larger than in collision, and, therefore, the diffusive

aperture due to the long-range collisions at injection will be larger by a similar factor and close to

9σ.

3 Image-Charge Effect

3.1 Model
The weak-strong simulation model of Ref. [1, 2] can easily be extended so as to include the effect

of image charges induced by the opposing beam on the long-range beam-beam interaction.

To derive the additional kick due the image charge consider first a line charge λ at a distance

a from the center of a cylinder of radius b. The conducting boundary conditions are fulfilled by

placing an image charge −λ at a radius b2/a. The translation to our problem is rather straightfor-
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Figure 3: Simulated action diffusion rates as a function of starting amplitude, for different numbers

of parasitic encounters at 10σ, assuming 4 interaction points, 1 horizontal and 3 vertical crossings,

and either the nominal tunes for collisions, Qx = 0.31 and Qy = 0.32 [left] or the injection tunes

Qx = 0.28 and Qy = 0.31 [right].

ward. For simplicity, in the calculation of the image-charge force we ignore the finite transverse

size of the source beam. To represent the image charge, we apply a kick as in Eq. (1), but of

opposite sign and with θc replaced by the angular distance (i.e., the spatial distance at the collision

point translated into IP phase-space coordinates) between the center of the test beam and the image

charge,

θc,im = 2
θ2

φ

θc
+

θc

2
, (5)

where

θφ =
b√

β∗
xβx,b sin ∆φ

≈ b√
β∗

xβx,b

(6)

with b the radial aperture, βx,b the beta function at the location of the long-range collision and

∆φ ≈ π/2 the betatron phase advance between the IP and the parasitic collision point. In Eq. (5),

the term θ2
φ corresponds to the square of the beam-pipe radius at the parasitic collision point,

b2, and the term θc/2 to the local offset a of the opposite beam from the center of the chamber,

both translated into equivalent angles at the IP. The last term, θc/2, represents the orbit offset

of the probe beam from the beam-pipe center, again converted into an IP angle. If there are no

quadrupoles between the collision point and the IP, we may also write θφ ≈ b/lb with lb the distance

to the IP. More generally, we have θφ ≈ b/a (θc/2). In Eq. (5), we have assumed that the beams are

displaced symmetrically with respect to the center of the chamber, which is only approximately

correct for the parasitic collision points inside and upstream of the low-beta quadrupoles.
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Explicitly, the formula for the image-charge kick reads

∆x = npar
2rpNb

γ

[
x′ + θc,im

θ2
t,im

− 1

θc

]

∆y = npar
2rpNb

γ

y′

θ2
t,im

, (7)

where θt,im ≡
(
(x′ + θc,im)2 + y′2

)1/2
.

3.2 Results
As an example, taking b = 24 mm and lb = 23 m, we obtain θφ = 1 mrad, and θc,im ≈ 7.4
mrad. The angle θc,im is more than 20 times larger than the crossing angle θc ≈ 300 µrad. For

this reason, we may expect that the image charge effect will be small, if not negligible. Figure

4 depicts the kick ∆x as a function of x′ with and without the image charge, for various beam

offsets. Even considering, for all parasitic collision points, the maximum beam offset of 9 mm at

a radial aperture of 3 cm, in reality occuring at one location inside the final triplet, the effect of the

image-charge force is still small. For these values as well as for a = 3 mm and b = 24 mm, the

effect of the image charge is visible only in a close-up view, illustrated in the right picture. The

beam-beam force is substantially reduced by the image charges only for beam offsets approaching

the chamber radius b, e.g., for a = 20 mm and a = 25 mm in Fig. 4. Thus only in those cases we

would expect the image charges to affect the diffusive aperture.
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Figure 4: Left: Long-range beam-beam kick ∆x, in m, as a function of x′, in rad, with and

without including the effect of image charges, Eq. (7), for various beam offsets and chamber radii.

Right: A close-up view for θφ = 1 mrad (offset of a = 3.5 mm at b = 24 mm), θc = 300 µrad,

Nb = 1.05 × 1011, and γ = 7461, revealing a small difference. when image charge is included.

In order to verify this expectation, we have performed weak-strong simulations at top energy

both with and without the image-charge effect. In these simulations we included collisions at 2

IPs, and, for the image charge calculation, we assumed the worst-case parameters listed above,

for all parasitic collision points. The resulting action-diffusion rates for various beam offsets and
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chamber apertures are compared in Fig. 5, as a function of starting amplitude. As already expected

from Fig. 4, the effect of the image charge becomes visible only for offsets a larger than half the

chamber radius, where, for a equal to 2 cm or 2.5 cm and a chamber radius of 3 cm they increase

the diffusive aperture by about 0.5σ.

Figure 5: Change of action variance per turn, in units of the rms beam emittance, as a function

of the starting amplitude in units of σ. Compared are simulation results with and without image

charges at the long-range collision points.

4 Summary
If quoted in units of the rms beam size, the diffusive apertures at injection and top energy are

comparable for the same normalized beam-beam separation. In particular, the diffusive aperture is

independent of β∗ and beam energy. However, it does strongly depend on the number of parasitic

encounters, on the betatron tunes, and on the crossing schemes at the various IPs. For the present

design values of beam displacements and chamber radii, the effect of image-charge forces at the

parasitic collision points is negligible.
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